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Taylor instability of finite surface waves 

By H. W. EMMONS, C. T. CHANG and B. C. WATSON 
Harvard University, Cambridge, Mass. 

(Received 20 May 1959) 

The instability of the accelerated interface between a liquid (methanol or carbon 
tetrachloride) and air has been investigated experimentally for approximate 
sinusoidal disturbances of wave-number range from well below to well above the 
cut-off. The growth rates are measured and compared with theoretical results. 
A third-order theory shows the phenomena of overstability which is found in the 
experimental results. Some measurements of later stages of growth agree 
moderately well with the available theory and disclose some additional pheno- 
mena of bubble competition, Helmholtz instability with transition to turbulence, 
and jet instability with production of drops. 

1. Introduction 
If a glass were held upside down with water held magically, in its usual position, 

and then released, the water would fall out. This process occurs in underwater 
explosions, in the acceleration by combustion of liquid fuels, in the acceleration 
of stellar material, and, perhaps, in the molten layer, if any, on the leading edge 
of a blunt re-entry body. These acceleration-unstable liquid surface phenomena 
were studied by G .  I. Taylor in the early 1940’s with the first publication in 1950. 
He showed that in the absence of viscosity and surface tension all small surface 
irregularities are unstable and grow in time. 

An initial test of the correctness of Taylor’s ideas, apart from comparison with 
explosion photographs where the accelerations were uncertain, was made by 
Lewis (1950). As discussed later, the agreement was well within experimental 
scatter, but the investigation was limited to a wavelength (or acceleration) range 
in which the effect of surface tension was slight. 

That surface tension and viscosity have modifying effects is clear, and it was 
shown by Bellman & Pennington (1 954) that surface tension produces a cut-off 
wave-number (or wavelength) above which the surface disturbance merely 
oscillates and below which the disturbances grow. Viscosity, on the other hand, 
merely decreases the rate of growth at low wave-number and causes damping 
of the oscillatory solutions at high wave-numbers. 

Allred & Blount (1953) with apparatus similar to that used by Lewis have, by 
using two fluids with densities close to each other to reduce the growth rate, 
studied the stability in a range where surface tension would be expected to play 
a part. Their results indicated a growth rate appreciably lower than the rate 
indicated by Bellman & Pennington’s theory. 

Experimental results show that the linear growth discussed in the theories can 
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apply only for very short times. The liquid surface rapidly changes to liquid 
spikes falling into the gas and gas bubbles rising* through the liquid. 

Attempts to analyse these later developments, have been made by Ingraham 
(1954) analytically, and Pennington et al. (1953) numerically. Both analyses 
showed the type of distortion of sinusoidal waves as observed, but neither carried 
the work to very large displacements. 

Certain large displacement effects have been examined. Davies & Taylor 
(1950) studied the constant rate of rise of bubbles through a stationary liquid, 
while Birkhoff (1954) and Garabedian (1957) have computed with high precision 
the bubble-rise velocity. 

On the other hand, the spikes have been shown analytically by Carrier (1953) 
and numerically by Pennington et al. (1953) to be simply left behind. Thug 
relative to the acceleration field the spikes are simply in free fall. 

These very approximate analyses fall far short of describing the later stages of 
development. The rbgime established after spikes and rising bubbles have 
appeared could remain until the spikes 'hit the bottom', while the bubbles 'rise 
to the top ' ; but in fact such a motion is found unstable. The rising bubbles com- 
pete with one another, the large ones growing at the expense of the small ones. 
Some indications of this type of behaviour is given in figure 1 (plate 1). The gas- 
liquid interface on the sides of the spikes and bubbles are in relative (tangential) 
motion which produces additional surface instability of the Helmholtz type. 
These experimentally observed phases have been recognized by Lewis (1950) and 
Birkhoff (1954), but no detailed attempt to obtain analytical nor experimental 
knowledge of the processes haa been made. In particular the final stage of mixing 
oould only be of interest in its various statistical properties (it being hopelessly 
complex for detailed description), yet it could be analysed only by a statistic 
which was strongly biawd by spacial and time variations of very large magnitude. 

2. Growth of surface waves 

For the purposes of analysis, we shall treat the medium as a non-viscous, incom- 
pressible fluid. Surface tension is included. The upper fluid is taken aa air whose 
density we may neglect relative to that of the liquid. The flow-field is assumed to  
be two-dimensional, with the d-axis taken in the unperturbed plane of the inter- 
face. For simplicity, we shall assume that the motion of the whole system is 
started from rest and the initial surface disturbance is a simple sinusoidal standing 
wave with amplitude qi and wave-number k'. For the proper interpretation of the 
results, all the physical parameters concerned will be expressed in dimensionless 
forms. As standards of measurement we shall take the wave-number k' and the 
wave velocity J(g'/k'),  of the initial disturbances, as scales of length and velocity, 
respectively, where g' is the acceleration relative to a force-free frame of reference. 
pq' is a virtual gravity force taken as positive in a direction normal to the surface 

* The t e rn  'rising' and 'falling' refer of o o ~  to the faxnilias gravity effects on an 
upsidedownglaesof water. For the general 0888, 'downwards' is the direction of the effective 
gravity component, directed for instability from the heavier toward the lighter medium. 

A. Theoretical consicEeration-Jinite waves with surface tension 
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from the heavier toward the lighter medium. Thus for liquids at rest on the 
surface of the earth, g' = - 981 cm/sec2. 

The dimensionless independent variables of the problem will be taken as 

2 = k'x', y = k'y', t = .J( +g'k't'). (2.1) 

In terms of these dimensionless variables, the governing equations and the 
boundary conditions for the velocity potential q5@, y, t )  (defined by u = - grad q5) 
and the surface displacement ~ ( x ,  t )  in the y-direction are: 
Governing equations: 

q5XX+q5YY = 0 

for 0 0 > 2 >  -00, ' I > y >  -00, t 2 0 .  (2.2) 

Boundary conditions: 
The liquid surface moves with the liquid, 

'If--'ISq5X+q5V = 0. (2.3) 

The pressure in the liquid differs from atmospheric by the effect of surface 
tension and the curvature, 

- 'I - 4f + w: + q5:) = k2['Ixx(1 + 'I:)-*] (2.4) 

Initial conditions: 'I@, 0) = ' I 0  cos 2, (2.6) 

7 f ( X , O )  = 0. (2.6) 

on y = 'I@, t ) .  

In equation (2.4) k is given by, 
- k '  

where k:, the cut-off wave-number, is given by 

where T is the surface tension. The parameter k can also be interpreted aa the 
ratio of the surface tension forces to the gravity forces. 

In order to proceed analytically, let us assume that the surface disturbance 
admits an expansion of the following type: 

If rr and all its derivatives are further assumed to be of the same order of 
magnitude, it follows from equation (2.3) that 

m 

q5 = 5 'IC4t. 
t -1  

(2.10) 

Since equation (2.2) is linear, it must be satisfled by every #,.. Our general 
scheme of solution is to introduce equations (2.9) and (2.10) into (2.3), (2.4), (2.6) 
and (2.6) and equate like powers of qo to find the corresponding boundary and 
initial conditions for 4,. and 'I,,. The values of 4, and its derivatives required at 
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The equation of the surface shows the growth of the first harmonic while the 
velocity potential shows the first harmonic and a purely time-dependent term 
which arises because of the additional pressure in the liquid required to produce 
the velocity of the rising fluid. The first harmonic is seen on analysis of these 
expressions to grow only by energy addition from the fundamental if the firat 
harmonic wave-number is above the cut-off (i.e. the fundamental k > Q), while 
for first harmonic wave-numbers below the cut-off they grow also by direct 
energy addition from the acceleration field, once they are started. 

The third approximation introduces some new features. When the first and 
second approximations are introduced into the boundary conditions, equations 
(2.13e) and (2.13f), they become 

73, t+43,y  = P 3 1 ( t ) C 0 S X + P ~ 3 ( t ) c o s  3 x ~  (2.14h) 

cos2 + &33($) cos 32, (2.14i) 

where the P and Q functions oft  are given in Appendix I. These equations show 
that as a result of the excitation of lower approximations not only a new mode 
appears (cos3s) but also a feedback of excitation to the fundamental (cosz) 
occurs. The solution can be expressed as 

(2.15) 

73 + #3,z + k 2 7 3 , z z  = 

$b3 = Csl(t) cos 2 + Cs3(t) cos 3s, 

q3 = B3,(t) co8 2 + B,(t) cos 32, (2.16) 

where the B and C functions oft  are given in Appendix 11. The second harmonic 
behaves as the fundamental and first harmonic with respect to a cut-off wave- 
number above which it grows only at the expense of energy from the lower wave- 
number waves. The second harmonic is at the cut-off for the fundamental at 
4 cut-off wave-number. Thus the distortion of the fundamental changes nature at 
each wave-number l /n(n = 1,2,3,  ...) as each successive harmonic changes 
from direct growth to becoming oscillatory. 

The final solution for the growth of harmonic disturbances on the surface 
against air of an accelerated fluid is to the present order of approximation: 

00 

7 = x 7gvr = ~ o c o s h ~ l t c o s z + ~ ~ B , 2 ( t ) ~ ~ ~ 2 2  
+=1 + $(B,(t) cos 2 + B33(t) cos 32) + . . . . (2.17) 

A corresponding sum holds for 
m 

$(z,y, t )  = 2 7gq5r = -70plsinhplteYcosz 

+ $(c31 cos 2 + c,, cos 32) + . . . . (2.18) 

These series can be expressed as Fourier series by rearrangement : 

(2.19) 

03 

where Am(k, t) = 2 Bm(k, t )  7; and the Bm(k, t )  are given in Appendix I1 up to 

B33. Thus is displayed the harmonic content of the distorted growing disturbance. 
r=m 
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From the hyperbolic function nature of the B,, functions already obtained 
and the manner of their formation, it appears that the entire series, if obtain& 
would change to a group of irrationally spaced time harmonic terms when the 
fundamental wave-number exceeds unity. This appears contrary to experi- 
mental results discussed in the next section. In any case, the present solution to 
the third approximation is still limited to small wave amplitudes; certainly no# 
exceeding 7 = q‘k’ = 21r, i.e. the wave amplitude equal to the wavelength. 

0 

Vertical scale magnified by a factor of 
(n/6w) 70 w.r.t. horizontal scale 
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FIGURE 2. Calculated wave profles at FIGURE 3. Calculated wave profles with 
different times. different initial amplitudes. 

Results of the analysis indicate that in order to get a reasonable representation 
of the wave-form even at comparatively early stages, at least a third approxima- 
tion is required. An example of the growth of a surface wave is given in figure 2 
where three consecutive shapes of the surface are shown for an initial sinusoidal 
disturbance of amplitude qo = 0.3 and wave-number k = 0 (i.e. the effect of 
surface tension has been neglected). The asymmetrical growth 6f the surface is 
clearly indicated by the narrowing of the crest and the broadening of the trough 
of the wave with time. The influence of the amplitude and wave-number of the 
initial disturbance on its subsequent growth are shown in figures 3 and 4, 
respectively. As is to be observed there, asymmetry of the surface occurs much 
earlier for initial disturbances of larger amplitudes than for those of smaller 
amplitudes. Disturbances having wave-numbers close to ‘ cut-off’ values (i.e. 
k = 1.0) are more stable than those having lower wave-numbers. Neglecting the 
effect of surface tension is equivalent to considering the limiting case of k = 0. 
Surface tension, therefore, has a definite stabilizing effect. Alternately, the 
limiting case k = 0 can be considered as a case of infinite acceleration for which all 
harmonics are below cut-off wave-number and are inherently unstable once they 
are s t a d .  
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The present third-order theory also shows that, contrary to the prediction of 
a modified first-order theory (Bellman & Pennington 1954), the surface disturb- 
ance still grows at the ' cut-off' wave-number (i.e. k = 1.0) in the manner given by 

7 = ~ 0 + ~ ~ ~ t a ~ ~ ~ ~ + ~ ; r l ~ [ ~ ~ ~ ( 2 J 6 t ) -  1 1 ~ 0 ~ 3 ~ .  (2.20) 

The crest and trough of the wave, however, are growing at equal rates. By 
further increasing the wave-number of the initial disturbance, as a consequence 
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FIGURE 4. Cdcuhted wave proflea with different wave-numbers. 

k < 1.0 k = 1.0 k > 1.0 

Taylor's original 710 exp ( t )  710 exp (4  To exP ( t )  

Bellman & Peh- go exp (J(1- k2) t }  7l0 t o  cos M k *  - 1) 4 
theory 

nington's theory 
Third-order theory to exp {J(l- ka) t} $+#ita 

of the basic mode A,(k, t )  COB 2. For e,,(k), see Appendix 11. 

e,,(k) go{J(ks- 1) t )  sin { J ( k a -  1) t}* 

* Note. The term compared is the dominating one apprnring in the amplitude A,(k, t )  

TABLE 1. Comparison between various theories regarding the growth of 
the basic mode in the earlier period 

of the feedback to the basic mode from the second harmonic, the surface disturb- 
ance, instead of growing exponentially in time as compared with those having 
wave-numbers k < 1.0, tends to be 'overstabilized','i.e. it oscillates in time with 
an ever-increasing amplitude. As a comparison between the predictions of the 
various theories, we have indicated qualitatively in table 1 the behaviour of the 
basic mode with variation of the wave-number. 
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B.  Experimental apparatus 
The experimental results reported here were performed in an apparatus con- 
sisting of a glass-sided frame partially filled with liquid, a means of accelerating 
this frame and its contents, and various pieces of equipment for recording the 
behaviour of the liquid surface aa the frame is accelerated. A schematic of the 
accelerator is given in figure 5. The frame which is accelerated is made of 

FIGURE 6. Arrangement of mcelerator parts. 

aluminiumwithaglassfrontand back. Itsinsidedimensionsare 12in. x Sin. x lin. 
This frame is restrained to travel in a vertical direction by the two guide 
columns. 

At the start of an experimental run the frame is held at the top of the guide 
columns by a steel wire while tension is applied to the rubber tubes attached to 
the bottom of the frame. To begin the run an electric current is passed through 
the steel wire, melting it and releasing the frame. After the frame has left the 
area of interest another set of rubber tubes attached to the upper end of the frame 
comes into play and arrests the moving frame. 

In  order to provide an initial disturbance to the surface of the liquid contained 
in the frame, a small paddle, its blade resting at the surface, is oscillated by a 
transducer driven by an audio oscillator and amplifier. 
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An indication of the initial amplitude of the travelling wave created by the 
paddle is obtained by observing the surface profile with a 30-power microscope. 
Astroboscope, flashing at a frequency close to the frequency at which the waves 
pass a fixed point, provides the illumination and creates the impression of a slowly 
moving wave profile which may be measured by means of a graduated reticle in 
the microscope. 

Photography is used for recording the time and position of the surface waves 
and also the position of the frame at millisecond intervals. A camera is placed in 

Time (msec) 

FIGURE 7. Square root of fiame dieplacement us time. 

front of the frame, while behind the frame are positioned ten flash bulbs which are 
fired by switches tripped by the descending frame. Also located on the frame is 
a spark gap a t  which appears a spark discharge every millisecond. Because the 
camera shutter is open during the time that the frame is descending the film 
records: (a) the sparks giving the position of the frame every millisecond, (b) the 
ten positions of the interface at the times the flash bulbs were fired, and (c )  the 
position of the spark gap at the time of the firing of the flash bulbs. The images of 
(a) and (c )  above allow a precise determination of the rel?tive times of the several 
events. A typical photograph is given in figure 6 (plate 2). 

The analysis of the film by travelling microscope and photographic enlarger 
provides the quantitative data. The travelling microscope is used to measure the 
position of the spark discharges, the wavelengths, and the wave amplitudes in the 
earliest stage of growth. The enlarger is used in the study of the later stages of 
growth. 

By plotting the square root of the distance from the initial position to the 
individual spark discharges against time (figure 7), the rate of acceleration and the 
relative time at which the acceleration began is obtained. 
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From extreme enlargements of the wave-forms of the later stages of growth an 
indication of the wave behaviour is obtained. A measurement of the distance 
from the wave spike or crest and of the bottom of the wave troughs from a mean 
horizontal line is made. The mean horizontal line is established by making the 
cross-sectional area occupied by the spikes equal to the area of the vacuated 
fluid in the troughs. This definition of a 'mean horizontal line' is used instead of 
a fixed line on the frame, because the meniscus growth changes the mean level of 
the waves relative to the frame. Figure 8 is an illustration of this later growth, 

&-----i t = 2-18 

I t = 387 
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f = 482 

w I = 632 

t = 760 

'II 
t = a74 

70 - 0064 k = 05 1 

FIGURE 8. Later growth outlines. 

Allred 
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FIGURE 9. Initial growth rate. 

C .  Experimental results on surface waves, small amplitudes 
The results of initial growth-rate experiments can best be discussed with the aid 
of figure 9 which is based on two non-dimensional numbers p, a measure of the 
rate of wave-amplitude increase, as the ordinate and k, the ratio of wave-number 
to the cut-off wave-number, as abscissa. 

For k < 1 the predominate growth rate is that predicted by the linear theory of 
Bellman & Pennington (1954) and given here by equations 2.14b and 2 . 1 4 ~ .  This 
linear theory prediction is represented by a solid line forming a quarter circle in 
the p, k-plane of figure 9. 

The value of p from experimental results of wave growth in the k < 1 range is 
taken as the solution of the equation 

(2.21) 

where r , ~ ~ / 7 ~  is the ratio of the measured height to the initial wave height (for 
experimental convenience the double amplitude or crest-to-trough distance is 
used) and tm is the non-dimensional time at which the wave reached the height p m .  
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If the results of a large number of experiments performed by Lewis (1960) of a 
water-air interface are interpreted by the above method, then these results wil l  
fall in the shaded area of figure 9. As a result of the large accelerations and 
moderately long wavelengths used by Lewis the effects of surface tension would 
not be expected to be revealed. 

The single point placed by the names, Allred & Blount, represent the results 
of an experiment reported by them in which they used n-heptane and air as the 
two fluids. Unfortunately, this is the only experiment of this type reported by 
them; their other experiments involved the interface between two fluids with 
densities close to each other in value and, therefore, cannot be represented entirely 
as functions of the two dimensionless numbers used in this figure. 

Film k' cm-l s'ls k 70 kc P 
D-3 8.64 2.32 1.00 0.11 0.49 
H-4 6-91 2-18 0.68 0.098 0.57 
M- 7 6-64 2-24 0.76 0.11 0.64 
H-10 7.00 1-86 0.87 0.12 0.62 
H-11 7.26 1-96 0.88 0.024 0.46 
K-2 7.77 6.81 0.6 1 0,064 0.63 
L-1 9.37 6-88 0.61 0.046 0.63 
L-3 6-53 6.94 0.42 0.032 0.61 
L-6 9.04 6.96 0.59 0.15 0.67 

TABLE 2. Initial wave-growth data 

The rest of the points in figure 9 are the results of the present work; the dimen- 
sional wave-numbers and accelerations of the experimental runs corresponding to 
the points in the p, k-plane are given in table 2. Although there is a definite 
decrease in growth rate as the waue-number approaches cut-off, all the photo- 
graphs of initially disturbed surfaces showed some evidence of wave growth. The 
experimental scatter is largely due to inaccuracies in the determination of the 
initial amplitudes. 

Beyond the cut-off wave-number m shown in figure 10 (plate 3) there is an 
indication of a type of behaviour here calledover-stability. The photographs taken 
ofwave growth under these conditions indicate a standing oscillation of the waves 
with amplitude increasing in time. In figure 10 the points A, B and C designate 
the same position in the apace of the frame, and it is seen that the waves have 
been caught in different positions of oscillation. 

No more than a single oscillation has been observed; apparently after pmsing 
through one reversal of direction the wave grows to a large size and well-developed 
third-stage growth appears with the resulting competition between bubbles soon 
reducing the number of bubbles in a given space. There is some evidence that the 
larger the value of k for waves behaving in the over-stable manner, the higher the 
frequency at which the wave oscillates, as would be expected from equation 
(2.14 c). 

D. Later stage wave-growth experiments 
The films which were analysed for third-stage growth showed considerable 
smtter of results even though a selective process was applied in the choice of 
which group of waves were to be studied; i.e. those waves were chosen which 
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appeared to be in a group of waves of a fairly uniform nature. The scatter waa 
largely due to two things: the presence of odd modes of vibration imposed on the 
steady growth, and to small variations in initial conditions which become 
magnified at later times. 

Except for the prediction of over-stability, the third-order theory does not 
check well with the experimental results. The theory predicts an ever-growing 
oscillstion while the experiments never show more than one cycle of bscillation 

t 

Spike acceleration 
Acceleration of free fall 

FIUURE 11. Spike acceleration. * = 

before monotonic growth occurs. It is not known at present whether the in- 
adequacy is in the theoretical treatment or in the experimental boundary 
conditions. 

Spike acceleration is illustrated by figure 11. Of the photographs measured for 
spike growth all indicated an acceleration of less than half the rate of free fall in 
the particular virtual gravity field applied. This may be compared with Carrier’s 
(1953) work and the machine calculations of Pennington et al. (1953), which 
indicated a rate of acceleration equal to the free-fall rate. Since both of these 
theoretical predictions assume the surface tension to be zero, they would indicate 
a higher rate of growth because the surface tension forces act against the direction 
of acceleration of the spikes. 

On the other hand, experimental results on bubble velocity resulted in good 
agreement with the theoretical predictions. The results, which are illustrated by 
two examples given in figure 12, in general give the conclusion that the value of 
c in the equation, v = c,/gA, lies between 0.2 and 0.3. This agrees with the theory 
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of Birkhoff (1954) and the work of Garabedian (1957), even tKough they did not 
consider surface tension effects in their analyses. 

Examples of competition between bubbles are observed in every photograph 
taken of the wave disturbance type. 

I I I I I 1 
0 2 4 6 8 10 

1 

FIGURE 12. Bubble velocity. 

3. Experiments involving a liquid sheet at the wall 
If the surface is not disturbed by the vibrating paddle, a distortion of the 

surface still results from the liquid meniscus around the edge of the accelerated 
container as is illustrated by figure 13 (plate 4). Point A is the position reached 
by a very thin sheet of liquid next to the glass. Point B is the top of a thin wall of 
liquid that is in the exact centre between the glass walls. Points C and D are the 
tips of two two-dimensional bubbles which occupy the space between the sheets 
at  the wall and the liquid wall in the centre. The more or less round bubbles of 
which there are four, one in each corner, are at the points E and F. The above is 
further illustrated by figure 14 (plate 5) in which an oblique view of the same 
type of phenomenon is offered. 

Some study was made on the behaviour of the liquid sheet at the side wall. 
The results of this study are given in figure 15. Two liquids, methanol and carbon 
tetrachloride, were used in these experiments, and little difference was found 
between the two except that in the case of the carbon tetrachloride a second 
thickening of the sheet was seen to occur some distance back from the leading 
edge. This thickening was seen to catch up with the leading edge, after the leading- 
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edge acceleration began to slacken, and to provide fresh impetus allowing accelera- 
tion to continue at  the original rate for a further distance. This point is illustrated 
by a comparison of figures 15 and 16. In  figure 16 the line, labelled second wave 
line, represents the region where the thickening has caught up with the leading 
edge. 

A graph, figure 17, of the ratio of the leading-edge acceleration to the applied 
gravity field versus the applied gravity field indicates that the leading edge 

Time (msec) Time (msec) 

FIGURE 15. Square root of the relative 
displacement of the leading edge of the 
methanol sheet at  the wall vs time. 

FIGURE 16. Square root of the relative 
displacement of the leading edge of the 
carbon tetrachloride sheet at the wall 
vs time. 
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FIGURE 17. The ratio of the acceleration of the leading edge of the liquid sheet at the wall 
to the acceleration of free fall in the applied gravity field vs the applied gravity field. 
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1" 
1 0 2  1 0 2  

II 1 0  

Time (msec) 43.7 60-0 72-8 83.3 
Dieplecement (cm) 1-17 2-22 3.30 4.30 

F I Q ~  18a. Liquid sheet profiles at a low acceleration ram. 

Time (msec) 
Displacement 

Fram 

38.2 46-6 63.9 59.8 
(cm) 3.12 4-40 6-80 7-09 

18 b. Liquid sheet profiles at 8 high clcceleration rate. 

191 

Time (msec) 

FIQURE 19. Profile thickness. 
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travels, in the ranges of applied gravities used here, at from 0.6 to 0-7 as fast aa 
a free falling body. This is a higher acceleration than any observed in the case of 
wave spikes. 

I n  order to  get more information on the manner in which the accelerating sheet 
acts, the profiles of the sheet at the wall were determined at the highest and 
lowest rates at which the experiments with methanol were run. These results are 
given in figures 18a and 18b. 

From the profile, a characteristic thickness can be measured and plotted versus 
time as in figure 19. The points marked A and B in this figure represent the time at 
which the displacement of the leading edge no longer maintained its constant 
acceleration. From this it can be deduced that at the time A for the experiment 
giving the profile shown in figure 18 a and at the time B for the experiment giving 
the profile shown in figure 18 b the liquid sheet ran out of fluid in the sense that the 
rate of supply from the main body of liquid was insu5cient to allow things to 
continue as they had been. 

The authors gratefully acknowledge the support of this work by the Office of 
Ordnance Research, U.S. Army, through Combustion Research Contract 
NO. DA-19-920-ORD-1029. 

Appendix I 
Amplitudes of forcing functions of the third approximation, equation (2.14h, i) 
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FIGURE 1. A later stage of wave development. 

EMMONS, CHANG m b  WATSON 

Plate 1 

(Fucing p .  102) 
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FIGURE 6. Typical photograph of position of interface a t  ten stages of growth. 
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FIGURE 10. Example of over-stable growth. 
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FIGURE 13. The growth of an initially undisturbed surface. 
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FIGURE 14. Oblique view of the growth of an initially undisturbcd surface. 
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